

Panel Discussion on The Role of Thermal Science in Meeting Societal Challenges

Panelists

Yildiz Bayazitoglu

Rice University

Yogesh Jaluria

Rutgers University

Joon Sik Lee

Seoul National University

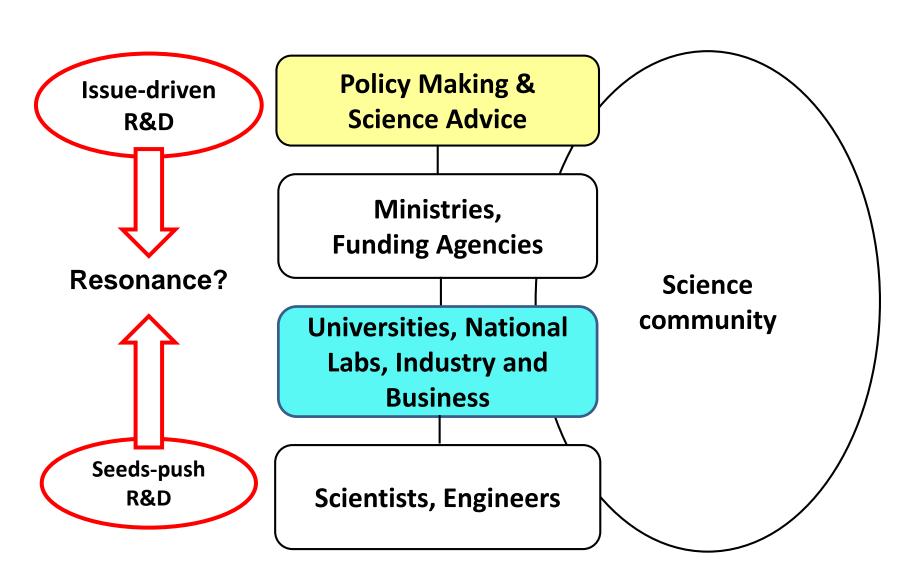
Dimos Poulikakos

Swiss Federal Institute of Technology in Zurich

Peter Stephan

Technische Universitat Darmstadt

Moderator Nobuhide Kasagi


Japan Science & Technology Agency / The University of Tokyo

Discussion

National Governance System of Science, Technology and Innovation

Question: Top-down vs Bottom-up?

There is a trend that the research funding is formulated in a framework of issue-driven (top-down) R&D rather than seeds-push (bottom-up) R&D in many countries. However, a dilemma exists

- 1. Can we justify research funding and acquire public trust by participating in top-down research?
- 2. How to design, legitimate, implement, evaluate and push forward issue-driven R&D?
- 3. How to cultivate and stimulate motivation of researchers and keep science autonomy under such policy environment?

General Discussion

The Message from the Panel

Messages from the Panel

- Needs for transdisciplinary collaboration in thermal science to meet societal challenges
 - ✓ **Integrating** fundamental thermal sciences with other disciplines (applied energy research, material sciences, ..., and in some cases mathematics, sociology, economics) is definitely needed for innovative and holistic solutions.
 - Transdisciplinary research is quite complex and has some positive and negative aspects and consequences.
 - A good balance between disciplinary and transdisciplinary research is needed as well as a good balance between top-down topic definition and bottom-up approaches.

- Focus on "transformative energy technologies" beyond pure heat transfer science
 - ✓ The pathway to a sustainable energy future will include the deployment of transformative/disruptive technologies.
 - The development of such technologies requires a holistic way of thinking across disciplines, accounting for socio-economical geographical and political realities: No single recipe.
 - ✓ The heat transfer community must define and claim its
 (currently diffuse) role in the competitive field of transformative energy technologies.

- Thermal science needs to be deployed to enable sustainable and safe energy supply with least environmental impact
- ✓ Must play leadership role in environmental studies. Should work with experts in environmental science and interact with government to guide policy. Articulate research needs.
- ✓ Should lead collaboration with material scientists and industry to develop cost effective methods for energy storage and for fabricating and implementing renewable energy systems.
- ✓ Major thrust needed on reducing energy consumption in energy intensive systems through optimization, with support from industry.
- ✓ Must get strongly involved in safety issues related to power generation and utilization. Results should translate into policy.

- Thermal engineering as a key in green growth as well as environmental sustainability
- ✓ It is necessary to carefully identify the upbringing technologies in thermal engineering for the potential green-tech business.
- ✓ A strategic program should be developed for the high quality research output from university to convert to tangible assets, and finally to the successful business.
- ✓ To create new growth engines, an integrated approach is necessary for coordinating R&D investment strategies, education, technology transfer for commercialization, and industrial collaboration with research institutions.

- Renovation of teaching thermal science: An urgent matter
- Students, faculty and administrators should work together to fully exploit new digital technologies for faster information flow, interactive communication and evolving curricula.
- ✓ To create global knowledge capital of thermal science we should continuously create an environment to teach thermal science and engineering to public and to scientists and engineers of other disciplines.

- Issue-driven R&D strategy better balanced to seeds-push strategy in meeting societal challenges
 - ✓ Identifying societal issues free from traditional disciplinary boundary and institutional interests
 - ✓ S&T goals defined clearly in terms of resolving the existing societal issues and implementing functions needed in the future society to justify public funding
 - ✓ Cultivate cross-disciplinary science and dynamic interaction between basic and engineering sciences
 - ✓ Promote collaboration of industry-academia-government leading to innovation